
SEMANTICALLY MEANINGFUL ATTRIBUTES FROM CO-LISTEN
EMBEDDINGS FOR PLAYLIST EXPLORATION AND EXPANSION

Ayush Patwari, Nicholas Kong, Jun Wang, Ullas Gargi
YouTube Music

{patwaria,kongn,juwanng,ullas}@google.com

Michele Covell, Aren Jansen
Google Research

{covell,arenjansen}@google.com

ABSTRACT

Audio embeddings of musical similarity are often used
for music recommendations and autoplay discovery. These
embeddings are typically learned using co-listen data to
train a deep neural network, to provide consistent triplet-
loss distances. Instead of directly using these co-listen–
based embeddings, we explore making recommendations
based on a second, smaller embedding space of human-
intelligible musical attributes. To do this, we use the co-
listen–based audio embeddings as inputs to small attribute
classifiers, trained on a small hand-labeled dataset. These
classifiers map from the original embedding space to a
new interpretable attribute coordinate system that provides
a more useful distance measure for downstream applica-
tions. The attributes and attribute embeddings allow us to
provide a search interface and more intelligible recommen-
dations for music curators. We examine the relative perfor-
mance of these two embedding spaces (the co-listen–audio
embedding and the attribute embedding) for the mathe-
matical separation of thematic playlists. We also report
on the usefulness of recommendations from the attribute-
embedding space to human curators for automatically ex-
tending thematic playlists.

1. INTRODUCTION

Automatically annotating music with semantically mean-
ingful and musically relevant attributes is an important ef-
fort with a long history [1–5]. It has become especially im-
portant as music-streaming services have made large cata-
logs of recorded music available to people worldwide and
as the user interface to these services continues to shift to-
wards voice activation rather than text search or graphical
browsing. Describing music using such musical attributes
has many applications such as:

• allowing consumers to search for music that satis-
fies musical, emotional or psychological constraints,
using text or voice queries;
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• browsing for such music using common usage pat-
terns reflecting activities (e.g., “running”) or moods
(e.g., “chill”);

• sequencing playlists for users that allows them to
choose which aspect of musical similarity to main-
tain, rather than simply following general co-listen
patterns;

• providing power users and curators the ability to pro-
gram specific experiences using higher-order opera-
tors.

In this paper, we describe a system for understanding
and describing music content. The paper is divided into
two main parts. The first part (Section 2) describes how
we extract semantically meaningful attributes from fea-
tures primarily based on audio-spectrogram embeddings
trained on co-listen user behavior. The second part (Sec-
tion 3) explores using these semantic-attribute embeddings
both to characterize and to extend professionally curated
playlists.

2. EXTRACTING SEMANTICALLY
MEANINGFUL ATTRIBUTES FROM CO-LISTEN

EMBEDDINGS

We collaborated with the YouTube Music curation team to
establish a prioritized list of semantically meaningful au-
dio attributes. Several attributes are subjective, making it
difficult to get enough ground truth data to support train-
ing. Typical deep networks require many labeled exam-
ples, due to the millions of trainable parameters in mod-
ern deep networks: for example, ResNet-18 (used by [6])
has around 11 million trainable parameters. We could use
existing meta-data for some attributes, such as genre, but
other important attributes, such as vocalness (presence of
vocals) and energy, are not as prevalent. Even with gen-
res, there is not a consistent set of labels available across
different music distributors.

We first review the work of [6]: building on this work al-
lows us to have shallow yet powerful attribute embeddings.
In Subsection 2.2, we describe our approach to extracting
full-track–level attributes from those co-listen–based au-
dio embeddings. We then discuss our work in measuring
attribute consistency across the duration of the track (Sub-
section 2.3). Finally, in Subsection 2.4, we report our ac-
curacy.
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2.1 Co-listen–based Audio Embeddings

To allow us to train only comparatively shallow networks,
we build on the audio-embedding work done by [6]. In this
subsection, we review the approach taken in that previous
work.

In [6], an initial audio embedding was obtained using
triplet loss from aggregated listening sessions. With the
triplet loss, tracks that were (in aggregate) listened to to-
gether were trained to be closer in the embedding space
than those that were not. The unaveraged embedding is
generated using a modified version of Resnet-18, operat-
ing on overlapping 3-second audio-spectrogram windows
(with a 1-second overlap). For training, [6] used random
3-second samples from the anchor, positive-example, and
negative-example tracks. They evaluated by holding back
10% of the 10.5-million audio tracks in their co-listen
dataset. When testing on this hold-out set, they achieve
over 50% improvement in performance as [2] under the
same training regime (0.079 average precision vs. 0.055
for [2]).

In this paper, we use averages of the [6] embeddings
as our audio embeddings, with averaging either over the
full song duration (Subsection 2.2) or over 10-second tiles
(Subsection 2.3).

2.2 Co-Listen Embeddings to Full-Track Attributes

In this paper, we consider the following attributes:

• Genre: A subset of the full international set of
genres, including only those deemed important
for the US market 1 , specifically: Hip-Hop/Rap,
R&B/Soul, Blues, Country, Jazz, Rock, Metal, Pop,
Dance/Electronic, Alternative/Indie, Latin Urbano,
Regional Mexican, Reggae, K-Pop, Korean Ballads,
and Classical;

• Valence (or hedonic tone): a measure of the emo-
tional positivity or negativity of the music;

• Vocalness: a measure of the prominence of speak-
ing and singing (or even wordless screaming or hum-
ming);

• Energy: a qualitative measure of the intensity (or au-
tonomic arousal) of the music;

• Temporal consistency of energy across a track (Sub-
section 2.3).

The primary source of ground-truth labels for our
attribute-classification models is the team of music ex-
perts at YouTube Music. This source means that were are
limited to between and 10,000 and 20,000 training exam-
ples for the energy, valence, and vocalness classifiers and
around 1,000 manual labels per genre for the multi-label
genre classifiers. 2

1 We restricted our genre set since our evaluation was focused on
playlists generated primarily for the US market and since the defini-
tion/assignment of genre is not uniform across the globe.

2 For genres, we also have other sources of label data, as described in
Subsection 2.2.1 but that secondary source is significantly less reliable.

To allow robust training, even from this small amount
of data, we train comparatively small, separate, fully-
connected neural nets on top of the (frozen) audio embed-
dings given by [6]. This is a version of transfer learning but
we do not attempt to fine-tune the underlying audio embed-
dings for our semantic-attribute task, due to the compara-
tively small amount of training data we have available in
our attribute space.

We then create an attribute embedding space using the
continuous-valued outputs of the final logits of each of
these classifiers, followed by pooled-variance normaliza-
tion, as will be described in Subsection 3.2.

Details about the classifier network architectures and
the training data are given next.

2.2.1 Genre

The genre model is a multi-label classifier (outputting 0
or more labels per video) from a vocabulary of 54 genres.
It is trained on a mix of 50,000 manually labeled videos
and 6,500,000 labels inferred from the DDEX feed deliv-
ered by music labels. 3 The genre-classification network is
fully connected with 8 512-wide hidden layers. The input
features are:

• Average audio embeddings [6] (across the full track)

• Average video embeddings [7] (across the full track)

• Image embedding of the video thumbnail [8]

• Word embeddings derived from a CBOW model [9]
trained on 10B search queries. They are applied to
the tokenized title, free-text DDEX genre, and free-
text music label name of the video.

• Inferred language of the title [10, 11]

• Video type (Art Track [12], official music video,
user-generated content)

While we might have been able to achieve higher
music-genre accuracy by learning cross-modal co-
embeddings [13–15], we instead use video, image, and
word embeddings trained for general video retrieval, with-
out restriction to music-related content. This allows us to
re-purpose more general embeddings, again avoiding the
overhead of large-network training, just as we have with
re-purposing the audio–co-listen embeddings [6].

We trained a genre-classifier network for 2 million steps
using Adagrad with a learning rate of 0.05 and a mini-batch
size of 64. We did not use regularization. We selected per-
class thresholds by choosing the point that maximizes F1
on a separate test set.

3 The DDEX feed labels must be mapped from the often idiosyncratic
genre tags provided by each music label to the 54 genre label set that
forms our vocabulary. That mapping is difficult to correctly determine,
resulting in noisy training data. We do not use this secondary source of
label data at all in evaluation.
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Figure 1. Temporal Computed Energy for Stairway to
Heaven.

2.2.2 Energy

Energy is computed using the output of a regression model
using full-track-average audio embeddings [6] as its only
input. It was trained on around 20,000 human-labeled ex-
amples with ratings in one of 3 buckets (i.e., low, medium,
high). These ratings are then converted to scores of 0, 1

2 ,
and 1. The network is fully connected with 2 hidden lay-
ers: the first layer is 128 units wide and the second, 64
units wide. It used Adam optimizer with a decay rate of
0.98 and was trained for 10,000 steps.

2.2.3 Valence

Valence is computed using the output of a regression
model, again using full-track-average audio embeddings
as its only input. The network is fully connected with 3
hidden layers: the first and third layers are 256 units wide
and the second, 512 units wide. It was trained on 10,500
human-labeled examples. As with energy, the training data
was human bucketed ratings with 3 distinct levels, from
negative (sad or angry), neutral, to positive (happy or con-
tent) and the buckets were assigned to 0, 1

2 , and 1. It used
Adam optimizer with a decay rate of 0.96 and was trained
for 10,000 steps.

2.2.4 Vocalness

Vocalness is computed using the output of a binary classi-
fication model, using full-track-average audio embeddings
as its only input. It was trained on 18,000 human-labeled
examples. The raters were asked to indicate if there were
significant lyrics or other vocal elements in the track. Like
valence, the network is fully connected with 3 hidden lay-
ers: the first and third layers are 256 units wide and the
second, 512 units wide. It used Adam optimizer with a
decay rate of 0.96 and was trained for 10,000 steps.

2.3 Temporal Inference

While the attributes listed above are often used to describe
the entirety of a music track, there can be significant varia-
tions in some attributes over the temporal extent of a song.
As an example, Figure 1 shows computed energy for the
song Stairway to Heaven. Generating a single audio em-
bedding representing the whole track via the mean of win-
dow samples results in a loss of information on this aspect.

For attributes like this, we shift to performing inference
on 10-second segments of audio, using the time-localized
audio embeddings. We do this in two steps. As a first step,
we train a full-track model of the desired attribute, with
the track-level average of the local audio embeddings as its

input. With that trained model in hand, we reuse it, running
a separate inference on each 10-second audio embedding,
to generate time-localized attribute estimates. From this
sequence of localized estimates, we compute a track-level
estimate using an aggregate heuristic. For example, for the
track-level energy, we take the maximum over the moving
average of this temporal estimate as follows:

E = max
0≤i<N−W

1

W

i+W−1∑
j=i

ej (1)

where N is the the number of 10-second segments in a
track, ej is the raw energy estimate for the jth segment,
and W is the window size which also a function of N ac-
cording to W = max{3, N

6 }.
In the future, we could train a time-localized regression

using explicit labels on the 10-second segments or using
the temporal estimates provided by the full-track model as
weak labels. However, for the purpose of this paper we
restrict ourselves to the method described above.

Separately, using the sequence of local estimates, we
measure the attribute’s consistency. The local estimate is
first smoothed, to give more reliable local estimates of the
attribute. For example, for energy, we use a moving aver-
age with windows as described above. From that sequence,
we can create a consistency measure using:

Consistency = 1−
∑N−2

i=0 |Ai+1 −Ai|∑N−2
i=0 Ai

, (2)

where Ai is the attribute value, determined by the
smoothed data and centered on the ith 10-second segment
of the track.

We improved precision from 85% to 90% using this
approach instead of inference on the mean audio embed-
ding, demonstrating the performance improvement pos-
sible from aggregating local inferences compared to per-
forming inference on pre-aggregated embeddings. The at-
tribute’s consistency measure is also separately useful: for
example, it can give playlist curators a deeper description
of the acoustic-energy profile, which is needed for task-
targeted playlists like “workout” or “focus”.

While this approach can be used for other (non-genre)
attributes as well, for the results in this paper, we only used
it with energy.

2.4 Accuracy of Individual Attribute Detectors

Table 1 describes the accuracy of each of our attribute
models.

Energy and valence are regression models. The test set
was created from human annotations on a four-point scale.
The regression results were evaluated using error thresh-
olds, set according to what was judged acceptable by the
curators. Even though the training data for valence used
a four-point scale, we used an evaluation threshold that is
equivalent to a three-point scale. This coarser scale for va-
lence evaluation was based on the needs of the curators.

Vocalness was trained as a binary classification and was
evaluated accordingly.
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Attribute Metric Quality
Genres: Multi-label
classifier.†

Human-expert
labels†

78% precision,
84% recall

Valence (regression,
output ∈ [0, 1])

Prediction < 0.33
from label‡

78% accuracy

Vocalness (binary
classifier)

Human-labeled
ground truth

97% precision,
78% recall

Energy (regression,
output ∈ [0, 1])

Prediction < 0.25
from label‡

90% accuracy

† The genre classifier was evaluated on the 16 genres used in this pa-
per. The evaluation set was formed from the entries from expert-curated
single-genre playlists and their labels were inferred accordingly.
‡ The thresholds for accuracy were set after consulting with expert hu-
man curators who provided musical examples of differences in valence
and energy that should be distinguishable.

Table 1. Accuracy of Each Full-Track Attribute Model.

For genre, we created an evaluation set using entries
from single-genre playlists authored by curators, with la-
bels inferred accordingly. None of these curated tracks
were used in training the genre classifier.

We are able to extract semantic attribute labels from the
frozen audio embeddings, both for genre (similar to [6])
and for more qualitative measures (energy, valency, vocal-
ness). For the qualitative measures, this labeling is based
solely on the audio embedding. 4 Huang et al. [6] re-
port similar findings. It is somewhat surprising that the
semantic information needed to compute these labels are
captured by embeddings trained for a completely differ-
ent task (that is, predicting which songs are listened to to-
gether). Based on this observation, we hypothesize that
an embedding space formed from these semantic attributes
can be used for recommending additions to human-curated
playlists. The results that we report in Section 3.2 sup-
port this conjecture and strengthen it by suggesting that
our attribute-embedding space is better suited for playlist
recommendations than the full audio-embedding space.

3. EXPLORING CURATED PLAYLISTS

In this section, we examine the use of our learned musical
attributes as a tool for discriminating between and adding
to music playlists. In Subsection 3.2, we compare the dis-
criminative power of the attribute-embedding space to that
of the audio-embedding space, using the playlists that we
describe in Subsection 3.1. Subsection 3.3 then describes a
human evaluation of the attribute-based recommendations
for playlist extension.

3.1 Corpus of curated playlists

YouTube Music [16] offers playlists with specific themes.
Playlist themes are relevant to targeted users or mar-
kets and mostly fit into one of the following categories:
ephemeral (e.g., event based), seasonal, and canonical.
The canonical category includes contextual (e.g., bedtime
music), mood (e.g., feel-good favorites), and activity (e.g.,
workout essentials) playlists. The canonical category is the

4 For genre, we provide our networks with information derived from
the video content and text in the title and description (see Subsec-
tion 2.2.1), as well as the co-listen–based audio embeddings.

most amenable to attribute analysis and automatic augmen-
tation. For this paper, we focused on playlists in the canon-
ical category.

We used several of curated canonical playlists to eval-
uate how well our attributes characterize and discriminate
between the groupings that were created by human experts.
Curated playlists are widely served across YouTube Music.
All of these curated playlists were publicly available as of
April 2020.

For our embedding-space studies, described in Subsec-
tion 3.2, we use 17 different human-curated, genre-based
playlists. That combined set of playlists had 4,563 en-
tries. To avoid evaluation-set contamination, none of the
playlists or their entries were used in the attribute training
(Section 2). The names of these 17 playlists are given in
Figure 2 and a more complete description is given in [17].

For our playlist-extension studies, described in Subsec-
tion 3.3, we use another disjoint set of 5 different human-
curated, vibe-based playlists. The combined set had 545
entries. General characterizations of these 5 playlists,
along with their URL links, are given in [17].

3.2 Analyzing playlists in attribute space

In this section, we investigate how well two different em-
bedding spaces capture the structure of human-curated
playlists. The first embedding space is the 128-dimension
space generated from [6], renormalized according to the
methodology described below. The second is a (re-
normalized) embedding space formed using the continu-
ous logits that are trained to provide our attribute labels:
that is, energy, valence, vocalness, and 16 top-level genres
that are typical of music listened to in the US.

We renormalize each space using the Tikhonov-
regularized [18] square-root inverse of the pooled variance
matrix [19]. The pooled variance matrix is estimated using
a sampling of playlists and treating each playlist as a sep-
arate cluster (with an independent cluster mean) but with
a single shared (pooled) variance matrix. The embedding
space is then rotated and scaled, according to the square-
root inverse of this pooled variance. We use Tikhonov
regularization in this inversion to avoid possible problems
with nearly singular variance matrices. 5

After re-normalization, each playlist is (on average) a
Gaussian distribution with an identity-variance matrix, al-
lowing us to directly compare between-playlist distances
across the two embedding spaces. We use this distance
equivalence throughout this section, to determine how well
human-curated playlists are separated in these two embed-
ding spaces. Our hypothesis is that, whichever embedding
space gives better separation between authored playlists
will also give better suggestions for creating or extending
playlists. We will more directly examine how well our sug-
gestions do for playlist generation in the next section. Be-
fore moving to that analysis, we compare the mathematical
performance of the two spaces in this section.

5 We did not observe any near singularities in either the attribute- or
the audio-embedding spaces but continued to use it, to avoid issues in the
future, when we plan to use a larger group of attributes.
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(a) using normalized attribute-embedding space (b) using normalized audio-embedding space

Figure 2. Average over each playlist k of di,k,j (defined in Eqn (3)). See right column for
the mapping from the playlist numbers to their titles and [17] for their descriptions and URL
links.

0 Onda Regional
1 Windows-Down EDM
2 Indie Anthems
3 Beast Mode Hip Hop
4 Acoustic Pop
5 K-Pop Hotlist
6 Modern Rock Hits
7 Endless R&B Throwbacks
8 Hotlist Tropical
9 Intro to Beethoven
10 Country Icons
11 Metal with a Message
12 Reggae for Lovers
13 Jazz Feels the Blues
14 South Side Nights
15 Reggae-Pop Crossovers
16 Intro to Haydn

We compared the separation of the 17 different human-
curated, genre-based playlists from Subsection 3.1 by ex-
amining the distances between each playlist entry and all
of the playlist centroids:

di,k,j = ||ei,k −mj ||2 (3)

where ei,k is the embedding-space coordinates for the ith

entry in the kth playlist and mj is the mean of embedding-
space coordinates across all Nj entries in the jth playlist:
mj = 1

Nj

∑Nj−1
i=0 ei,j . Figure 2 shows the average of

these distances for each playlist: that is, 1
Nk

∑Nj−1
i=0 di,k,j .

The larger the distance the less “alike” the two playlists
appear in that embedding space. Based on Figure 2, the
(normalized) attribute embedding space does a better than
the (normalized) audio embedding space at separating the
playlists, while keeping each individual playlist compact.

We can look at this separation/compactness of playlists
in each embedding space, with one summary statistic per
playlist entry. We use ∆i,k = minj 6=k di,k,j − di,k,k: the
smallest difference between each entry’s distance to the
closest, “other” mean and its distance to its own mean. Fig-
ure 3 shows the histograms of this relative distance mea-
sure for the (normalized) attribute-embedding space and
the (normalized) audio-embedding space, as well as the
histogram of the paired difference between them. For Fig-
ure 3-a and Figure 3-b, highly positive values are best and
negative values indicate an entry that is closer to a differ-
ent playlist’s mean than to its own. For Figure 3-c, positive
values correspond to the attribute-embedding space giving
better separation than the audio-embedding space. Using a
single-tail, paired Student t-test [20] on this data indicates
that the attribute embedding space is significantly better
than the audio embedding space with a probability well
over 99% (t = 27.24, p = 3e-151). In order to be certain
that this high level of significance does not derive from un-
equal variances across the two embedding spaces, we also
ran a single-tail Welch’s unequal-variance t-test [21]: this
still showed well above 99% certainty (t = 16.24, p = 5e-
58).

(a) ∆att
i,k using

normalized attribute-
embedding space

(b) ∆aud
i,k using

normalized audio-
embedding space

(c) paired difference:
∆att

i,k −∆aud
i,k

(matched indices)

Figure 3. Histograms of ∆i,k using the two different em-
bedding spaces and of their difference.

3.3 Extending playlists using attributes

In this section, we explore the application of the learned-
attribute space to generating algorithmic candidates that
could be used to refresh or extend human curated playlists
in the corpus described in Subsection 3.1. One advan-
tage of using the learned-attribute space is the ability for
humans to understand, debug, and tweak the automatic
method. We run an experiment where we show profes-
sional music curators a set of candidates for a playlist and
ask them to assign a rating of whether those candidates
sufficiently align with its vibe.

3.3.1 Playlist selection

We selected 5 playlists from the corpus for this experiment
with the premise that they had consistent vibe with focus on
context/mood/activity rather than, for example, most pop-
ular or new releases. We hypothesize that a semantically
meaningful attribute space would be better at generating
recommendations closer to the vibe of such playlists com-
pared to traditional co-listen–based approaches.

3.3.2 Candidate generation

For each playlist, we aggregated attribute scores across its
tracks to create a recipe consisting of the following:

• Top-N genres contributing to 80% of the cumulative
frequency distribution where a genre is assigned to
a playlist if its score was above the threshold deter-
mined from evaluation in Subsection 2.4.
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531



Playlist
Rating

Total
Good Borderline Bad

Classical for Sleeping 36% 38% 26% 214
Classic Sunshine Soul 39% 35% 26% 101

Tranquil Spa Day 37% 63% 0% 27
Feeling Good in the 80’s 22% 20% 58% 143

90’s Rock Relaxation 11% 24% 65% 85

Table 2. Music-curator ratings on recommendations for
playlist extension. See [17] for the description and URL
link of each playlist.

• Mean and standard-deviation of the real-valued at-
tributes energy, valence, vocalness. We also in-
cluded tempo in beats-per-minute computed using
APM [22] as an additional attribute.

• Other metadata attributes including top-10 artists,
earliest and latest release year of tracks on the
playlist. These were added as constraints to weed
out recommendations too far away from the playlist
premise.

This recipe is then used to generate a list of tracks clas-
sified into the top genres, with real-valued attribute scores
at most one standard-deviation away from mean, release
year within the earliest and latest release year and perform-
ing artist(s) among the top artists. We sort this list by pop-
ularity in the last 365 days and prune to generate a final list
of recommendations.

3.3.3 Curator assignment

Music curators were shown these recommendations and
asked to assign a rating from below options

• Good - “track is not only appropriate for the playlist
premise, but also a high-quality recommendation”

• Borderline - “while track’s attributes align with the
premise, I would not be excited to program it”

• Bad - “I would never program this track to this
playlist, because it does not fit the premise”. Raters
were also asked to note a reason in this case.

3.3.4 Results

The results of the experiment are tabulated in Table 2. We
find that, for playlists defined almost solely by mood and
emotional affect, the curators found a majority of the tracks
good enough to program onto the playlists and some “bad”
tracks. For Tranquil Spa Day especially, there were no
“bad” tracks in the 27 that were rated. This shows that
the recipe based on semantic attributes and metadata con-
straints was a decent heuristic for playlist extension.

For the decade playlists (last 2 rows) the performance
was very poor. To have a better understanding, we ana-
lyzed the rater notes and found that 77 out of 83 and 45 out
of 56 “bad” tracks for Feeling Good in the 80s and 90’s
Rock Relaxation, respectively, were due to the curators not
feeling that the tracks belonged to the correct decade. On

examination, we found that the metadata was indeed in-
correct on those tracks. Discounting these tracks with in-
correct metadata, our approach again seems to perform de-
cently on these playlists.

For a qualitative study like this, the strongest support is
the overall evaluation by the music curators on whether or
not the suggestions are useful to have. Even with around
one-in-four playlist suggestions being discarded as incor-
rect, the music curators found that having these automat-
ically generated suggestions available sped up their work
on refreshing and extending the vibe-oriented playlists.

4. CONCLUSIONS

We described a system and method to automatically label
musical tracks with semantically meaningful attributes, in-
cluding musical genre, autonomic arousal, valence, and
vocalness. These attributes are inferred using models
operating on audio embeddings generated by deep neu-
ral networks trained on co-listen data, using triplet loss.
The attribute models themselves are trained using smaller
amounts of labeled data. We show that precision improve-
ments can be obtained by running attribute inference on
temporal segments and fusing those scores into a whole-
track score compared to running inference on an averaged
embedding. This approach also yields temporal consis-
tency attributes that are useful in and of themselves.

We then define a lower-dimensional embedding space
established by these semantic musical attributes. We com-
pare these embeddings with the original audio co-listen–
trained embeddings in the context of professionally curated
playlists. We find that this space better separates a sample
of thematic playlists: it matches the semantic similarity
implicit in these professionally curated playlists better than
the raw audio embedding space.

Unlike previous studies of playlist extension [23, 24],
we used these semantic attributes to generate human-
readable and -editable recipes for professionally curated
playlists. We used those recipes to automatically extend
the playlists and measured the quality of those automatic
content refreshes via human evaluation.
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